Chem. Ber. 116, 2261-2274 (1983)

Über 1,4-Dihydro-1,2,4,5-tetrazine

Franz Alfred Neugebauer*, Claus Krieger, Hans Fischer und Rolf Siegel

Max-Planck-Institut für Medizinische Forschung, Abteilung Organische Chemie, Jahnstr. 29, D-6900 Heidelberg 1

Eingegangen am 8. November 1982

Die Stammverbindung 1 sowie die Derivate 9 und 13 liegen nach Röntgenstrukturanalysen in der 1,4-Dihydroform vor. Eingehende Untersuchungen der Elektronenspektren von 1-16 zeigen, daß auch in Lösung die 1,4-Dihydroform thermodynamisch bevorzugt ist. Eine Reihe neuer 1,4-Dihydro-1,2,4,5-tetrazin-Radikalkationen wurde ESR-spektroskopisch untersucht.

A Study of 1,4-Dihydro-1,2,4,5-tetrazines

X-ray structure analysis of the primary compound 1 and the derivatives 9 and 13 yields a 1,4-dihydro structure. Detailed studies of the electronic spectra of 1-16 show that also in solution the 1,4-dihydro form is thermodynamicly favoured. A series of new 1,4-dihydro-1,2,4,5-tetrazine radical cations was studied by e.s.r.

N,N'-Dihydro-1,2,4,5-tetrazine treten in vielen 1,2,4,5-Tetrazin-Synthesen als Zwischenstufen auf und lassen sich leicht durch Reduktion von 1,2,4,5-Tetrazinen, zum Beispiel mit Schwefelwasserstoff, herstellen¹⁻³⁾. Ohne überzeugendes experimentelles Argument werden diese Verbindungen bis heute bevorzugt als 1,2-Dihydroderivate formuliert¹⁻⁴⁾, obwohl eine Reihe von Beobachtungen diese Annahme in Frage stellt. *Huisgen* und *Chae*⁵⁾ zeigten 1965 durch vergleichende spektroskopische Untersuchungen und insbesondere Dipolmomentmessungen an 3,6-Diphenyl-N,N'-dihydro-1,2,4,5tetrazin (1.55 D) und entsprechenden Dimethylderivaten (14: 0.9 D; 16: 3.6 D), daß diese Dihydroverbindung in Lösung zumindest überwiegend in der 1,4-Dihydroform 12 vorliegt. Auf eine analoge Konstitution weist auch die weitgehende Übereinstimmung der Elektronenspektren von 3,6-Dimethyl-N,N'-dihydro-1,2,4,5-tetrazin und 1,3,4,6-Tetramethyl-1,4-dihydro-1,2,4,5-tetrazin (4) hin⁶⁾. Außerdem wird im speziellen Fall des wasserstoffverbrückten 3,6-Di(2-pyridyl)-1,4-dihydro-1,2,4,5-tetrazins die 1,4-Dihydroform durch Röntgenstrukturanalyse belegt⁷⁾.

Im Zusammenhang mit Arbeiten über Tetrazine⁸⁾ fielen verschiedene N,N'-Dihydro-1,2,4,5-tetrazine an, deren exakte Formulierung ausstand. Wir bemühten uns deshalb, die Konstitution dieser Verbindungen experimentell breiter abzusichern und berichten hier über die Ergebnisse der Röntgenstrukturanalysen von 1, 9, 13 und 16 sowie vergleichende spektroskopische Untersuchungen (1 – 16).

Ein Vergleich der Elektronenspektren von Dihydrotetrazinen und N, N'-Dimethylderivaten, in denen alternative Dihydroformen fixiert sind, kann entscheidende Hinweise auf die Konstitution der Dihydroverbindung geben. Das von *Huisgen* und *Chae*⁵ synthetisierte Isomerenpaar **14** und **16** läßt sich für einen derartigen Vergleich allerdings

© Verlag Chemie GmbH, D-6940 Weinheim, 1983 0009 – 2940/83/0606 – 2261 \$ 02.50/0

		R^1	R ³ ≃R ⁶	\mathbf{R}^4	
$\mathbf{R}^4_{\mathbf{X}}$	19)	Н	Н	н	
	2 ¹⁰⁾	CH3	н	CH ₃	
$R^{*}-C_{N-N}^{2}$	3 ⁶⁾	Н	CH ₃	н	
R ¹	4 ⁶⁾	CH3	CH_3	CH3	
	5	Н	C_6H_{11}	н	
	6	CH3	C_6H_{11}	н	
	7	СН₃	C_6H_{11}	CH_3	
	8 ⁷⁾	н	OCH3	н	
	9 ¹¹⁾	Н	SCH_3	Н	
	10	CH3	SCH3	н	
	11	CH3	$\rm SCH_3$	CH ₃	
	12 ^{12,13)}	н	C_6H_5	Н	
	13 ^{14,15)}	CH_3	C_6H_5	н	
	14 ^{5,14-16)}	CH3	C_6H_5	CH_3	
N-N B ³ -C ³⁴⁻³ C-B ⁶	R ³ =	R ⁶	R ³ .	\mathbb{R}^{4} N-N -C C- \mathbb{R}^{6}	1a-14a
H ₂ C CH ₂	16^{5} C ₆ H	411 I ₅	Ĩ	N−N⊕ R ¹	

nur mit Einschränkungen heranziehen, weil sterische Wechselwirkungen der unmittelbar nebeneinander angeordneten Methyl- und Phenylreste die Einbeziehung der 3,6-Phenylsubstituenten in das chromophore System des heterocyclischen Ringes modifizieren. Einfache 1,2-Dimethyl-1,2-dihydro-1,2,4,5-tetrazine sind nicht bekannt; auch unsere synthetischen Versuche in dieser Richtung (z. B. $R^{3,6} = H$, CH_3) mißlangen oder ergaben Produkte anderer Konstitution. Ein Isomerenpaar (7, 15), das den für einen Vergleich der Elektronenspektren gestellten Anforderungen entspricht, konnte schließlich realisiert werden. Aus der Reaktionsmischung von 17 und Phosphorpentachlorid ließ sich das Azindichlorid 18 in geringer Ausbeute (12%) abtrennen. Seine Umsetzung mit Hydrazin, mit Methylhydrazin oder mit 1,2-Dimethylhydrazin lieferte die entsprechenden Dihydro-1,2,4,5-tetrazinderivate 5, 6 und 15. Die zu 15 isomere 1,4-Dimethylverbindung 7 erhielten wir durch Methylierung von 6 mit Methyliodid in Dimethylformamid.

Die Methylierung von 9 unter gleichen Bedingungen ergab neben einer geringen Menge der Monomethylverbindung 10 ebenfalls das 1,4-Dimethylisomere 11. Dagegen lieferte die analoge Umsetzung des 3,6-phenylsubstituierten 12 sowohl das 1,4- (14) als auch das 1,2-Dimethylderivat 16; beide Verbindungen waren bereits aus anderen Darstellungsverfahren bekannt^{5,14-16}. Die zugehörige Monomethylverbindung 13 wurde durch Umsetzung von 3,6-Diphenyl-1,2,4,5-tetrazin mit Methylmagnesiumiodid hergestellt.

Röntgenstrukturanalysen von 1, 9, 13 und 16*)

Die Daten der Röntgenstrukturanalysen sind im experimentellen Teil in den Tab. 3-6 zusammengestellt. Um den Vergleich zu erleichtern, wählten wir für die Bezeichnung der Atome die chemische Bezifferung des heterocyclischen Ringes. Numerierungen aus kristallographischer Sicht hätten wegen der C_2 -Symmetrie von 9 und 16 unterschiedliche Bezeichnungen für chemisch entsprechende Atome in den untersuchten Molekülen ergeben.

Die Röntgenstrukturuntersuchungen der Stammverbindung 1 (Abb. 1) und des 3,6-Bis(methylthio)-Derivates 9 (Abb. 2) sollten die Konstitution dieser Verbindungen im Festzustand eindeutig sichern. Aus spektroskopischen Gründen (vgl. Elektronenspektren) wurde auch das monomethylierte 3,6-Diphenylderivat 13 in diese Strukturuntersuchung einbezogen. Die Ergebnisse (vgl. Abb. 1-3) zeigen, daß alle drei Moleküle im Festzustand eine 1,4-Dihydro-Konstitution besitzen. Für den 1,4-Dihydro-1,2,4,5-tetrazin-Ring werden bootähnliche Konformationen (vgl. Abb. 1 und 3) gefunden, in denen die Atome N(2), C(3), N(5) und C(6) nahezu planar angeordnet sind. Durchgelegte Least-Squares-Ebenen ergeben nur geringfügige Abweichungen (< ± 4 pm, Tab. 4). Die dreifach substituierten Stickstoffatome N(1) und N(4) dieser Verbindungen sind in gleicher Richtung versetzt und von der N(2), C(3), N(5), C(6)-Ebene 41 (1) bzw. ≈ 46 pm (9, 13) entfernt (Tab. 4). Bei 1 beträgt der Schnittwinkel der N(2), C(3), N(5), C(6)- und der C(3), N(4), N(5)- bzw. C(6), N(1), N(2)-Ebenen 32°; für 9 und 13

Abb. 1. Struktur von 1,4-Dihydro-1,2,4,5-tetrazin (1): a) ORTEP-Darstellung, Sicht senkrecht auf den Ring; b) Konformation, Seitenansicht

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50314, des Autors und des Zeitschriftenzitats angefordert werden.

Abb. 2. Projektion der Struktur von 3,6-Bis(methylthio)-1,4-dihydro-1,2,4,5-tetrazin (9) entlang der b-Achse

Abb. 3. Seitenansicht der Struktur von 1-Methyl-3,6-diphenyl-1,4-dihydro-1,2,4,5-tetrazin (13)

werden $\approx 36^{\circ}$ gefunden. Alle Bindungslängen und Bindungswinkel (Tab. 3) entsprechen der Erwartung. Auffallend kurze Abstände zwischen den pseudoäquatorial angeordneten N-H-Wasserstoffen und Stickstoffen [N(2) bzw. N(5)] benachbarter Moleküle (vgl. Abb. 2 und Tab. 5) weisen darauf hin, daß bei den untersuchten Verbindungen im Kristall intermolekulare Wasserstoffbrücken bestehen.

Im monomethylierten 3,6-Diphenylderivat 13 werden für die beiden Phenylsubstituenten unterschiedliche Torsionswinkel gefunden: N(2) – C(3) – C(7) – C(8) = 43.3°; N(1) – C(6) – C(13) – C(18) = 64.4°. Der größere Torsionswinkel des 6-Phenylrestes kommt durch den sterischen Einfluß der nachbarständigen 1-Methylgruppe zustande. Die große Torsion um die C(6) – C(13)-Bindung kann die Konjugation zwischen Phenylrest und heterocyclischem Ring erheblich stören, wenn nicht sogar aufheben. Diese Vorstellung wird durch das ¹H-NMR-Spektrum von 13 bildhaft bestätigt. Für die Protonen des 3-Phenylrestes beobachtet man zwei Multipletts ($\delta = 7.33 - 7.58$, H_p + 2 H_m; 7.70 – 8.00, 2 H_o) im relativen Intensitätsverhältnis 3:2, weil die elektronenziehende Wirkung des heterocyclischen Ringes eine ausgeprägte Tieffeldverschiebung

der ortho-Protonen im 3-Phenylsubstituenten verursacht. Die Protonen des 6-Phenylrestes dagegen erscheinen als Singulett (7.46, 5H), was zeigt, daß die Konjugation zwischen diesem Phenylsubstituenten und dem 1,4-Dihydro-1,2,4,5-tetrazin-Ring aufgrund der sterischen Verhältnisse weitgehend aufgehoben ist.

Zur Ergänzung und ebenfalls aus spektroskopischen Gründen wurde auch von 16 eine Röntgenstrukturanalyse durchgeführt. 16 besitzt C_2 -Symmetrie. Zwischen dem heterocyclischen Ring, der in einer twistartigen Konformation vorliegt (Abb. 4), und den Phenylsubstituenten besteht Konjugation. Der Torsionswinkel in der verknüpfenden C(3) - C(7)-Bindung beträgt ca. 35°. Mit diesem Bild einer ausreichenden koplanaren Anordnung des Gesamtmoleküls stimmen auch die Ergebnisse der Elektronen- und ¹H-NMR-Spektren von 16 überein⁵⁾.

Abb. 4. ORTEP-Darstellung von 1,2-Dimethyl-3,6-diphenyl-1,2-dihydro-1,2,4,5-tetrazin (16)

Elektronenspektren

N,N'-Dihydro-1,2,4,5-tetrazine könnten in Lösung, wenn ein Tautomeriegleichgewicht besteht, auch in der 1,2-Dihydroform auftreten. Das formal ebenfalls mögliche 1,6-Dihydroderivat scheidet aus, weil 1,6-Dihydro-1,2,4,5-tetrazine beständige, isolierbare Verbindungen sind^{6,17,18}, die sich in Lösung unter Normalbedingungen nicht in N,N'-Dihydro-1,2,4,5-tetrazine umwandeln. Da für die 1,2-Dihydroform (Azinchromophor) eine ausgeprägte Absorption im UV-Bereich zu erwarten ist [z. B. Acetonazin (Ethanol): λ_{max} (Ig ε) = 227 nm (3.48)]¹⁹, sollte der Vergleich der Elektronenspektren von gelöster 1,4-Dihydroverbindung und 1,4- bzw. 1,2-Dimethylderivaten, in denen die alternativen Dihydroformen fixiert vorliegen, Hinweise auf ein Auftreten des 1,2-Tautomeren in Lösung geben. Ein solcher Vergleich ist jetzt bei den 3,6-Dicyclohexylderivaten 5, 7 und 15 möglich (Tab. 1, Abb. 5), denn bei diesen Verbindungen kann man davon ausgehen, daß die Elektronenspektren der heterocyclischen Ringe durch eine unterschiedliche räumliche Anordnung der Cyclohexylreste nur geringfügig beeinflußt werden.

Die Elektronenspektren von 5, 6 und 7 zeigen wie bei dem Verbindungspaar 3, 4⁶⁾ eine weitgehende Übereinstimmung in der Kurvenform (Vor- und Hauptbande; vgl. Tab. 1 und Abb. 5). Erwartungsgemäß sind die Absorptionsmaxima der 1-Methyl- und 1,4-Dimethylderivate relativ zu denen der Dihydroverbindung etwas bathochrom verschoben. Von diesen Elektronenspektren unterscheidet sich die Absorptionskurve der 1,2-Dimethylverbindung 15 beträchtlich (Abb. 5). Man beobachtet nur eine ausgeprägte Bande bei 274 nm, die im Vergleich zur Hauptbande des 1,4-Dimethylderivates 7 um

Abb. 5. Elektronenspektren: 5 -----, 7 --- und 15 ····· in Dioxan

lab.	. Elektronenspektren	

	Solvens	$\lambda_{\max} \operatorname{nm} (\lg \varepsilon), s = \operatorname{Schulter}$
1	Dioxan	298 (1.78)
2	Dioxan	237 (3.82), 315 (1.84)
36)	Ethanol	300 (2.03)
46)	Ethanol	235 (3.83), 310 (2.08)
5	Dioxan	289 (2.01)
6	Dioxan	229 (3.68), 296 (2.04)
7	Dioxan	243 (3.78), 304 (2.05)
	Hexan	244 (3.74), 305 s (2.14)
	Ethanol	242 (3.77), 305 (2.06)
9	Dioxan	220 (4.20), 300 s (2.26)
10	Dioxan	226 (4.22), 303 (2.27)
11	Dioxan	230 (4.24), 312 (2.26)
12	Dioxan	246 (4.46), 283 s (3.65), 357 s (2.55)
13	Dioxan	238 (4.35), 291 (3.59), 360 s (2.73)
	Hexan	236 (4.38), 290 (3.66), 360 (2.76)
	Ethanol	236 (4.36), 275 s (3.60), 355 s (2.67)
14 ^{a)}	Dioxan	226 (4.30), 293 (3.62)
15	Dioxan	274 (3.44)
	Hexan	270 (3.48)
	Ethanol	288 (3.42)
16 ^{a)}	Dioxan	255 (4.34), 330 (4.12)

a) Übereinstimmend mit Lit.⁵⁾.

30 nm längerwellig liegt und mit zunehmender Polarität des Solvens bathochrom verschoben wird (vgl. Tab. 1; offenbar ein π - π *-Übergang). Die große Ähnlichkeit der Elektronenspektren von 5, 6 und 7 zeigt, daß 3,6-Dicyclohexyl-1,4-dihydro-1,2,4,5tetrazin auch in Lösung als 1,4-Dihydroverbindung vorliegt. Gleiches gilt auch für die Verbindungsreihen 1-2, 3-4 und 9-11.

Komplizierter sind die Zusammenhänge in der Reihe der 3,6-Diphenylvertreter 12 – 14 und 16, weil hier sterische Effekte zusätzlich ins Spiel kommen. Die N-Methylsubstituenten können die koplanare Einstellung der Phenylreste zum heterocyclischen Ring stören⁵⁾. Die hypsochrome Verschiebung der Hauptbande bei gleichzeitiger Intensitätsabnahme in der Reihe 12 [246 nm (lg $\varepsilon = 4.46$)], 13 [238 (4.35)] und 14 [226 (4.30)] ist eine direkte Folge der sterischen Wechselwirkung zwischen nachbarständigen N-Methyl- und C-Phenylsubstituenten. Die sterische Störung der Konjugation zwischen dem heterocyclischen Ring und dem 6-Phenylrest durch die 1-Methylgruppe in 13 zeigt sich gleichermaßen in der Kristallstruktur dieser Verbindung (Abb. 3) und wird zusätzlich durch das ¹H-NMR-Spektrum bestätigt. In 13 kann sich noch der 3-Phenylrest koplanar zum heterocyclischen Ring einstellen. Dies ist bei 14 nicht mehr möglich, denn die Methylsubstitution in 1- und 4-Stellung führt zu einer Verdrillung beider Phenylreste⁵⁾. Anders ist die Situation bei der entsprechenden 1,2-Dimethylverbindung 16. Die erheblich längerwellige Lage der ersten Absorptionsbande von 16 (330 nm) im Vergleich zu der des 3,6-Dicyclohexylderivates 15 (274 nm) zeigt an, daß die 3,6-Phenylreste in das Konjugationssystem einbezogen sind. Die annähernd koplanare Anordnung des gesamten Konjugationssystems in 16 wird sowohl durch das ¹H-NMR-Spektrum⁵⁾ als auch durch die Kristallstruktur (Abb. 4) voll bestätigt. Auch in dieser Reihe, 12 – 14 und 16, liefert das Elektronenspektrum von 12 kein Anzeichen für ein gleichzeitiges Auftreten des 1,2-Dihydro-Tautomeren.

1,4-Dihydro-1,2,4,5-tetrazin-Radikalkationen

Sowohl die Einelektronenoxidation von 2 und anderen Derivaten mit Iod^{10} als auch die Komproportionierung von 3,6-Dimethyl-1,2,4,5-tetrazin und 3,6-Dimethyl-1,4-dihydro-1,2,4,5-tetrazin (3) in saurer Lösung²⁰⁾ liefern beständige Radikalkationen (2a, 3a). Die in Tab. 2 zusammengestellten neuen Vertreter wurden durch Oxidation der

	$a(N^{1,4})$	$a(N^{2,5})$	$a(\mathrm{H}^{\mathrm{NH}^{1,4}})$	$a(H^{NCH_3^{1,4}})$	andere	g
1a	7.29	4.55	9.10			2.0039
2a ^{10,a)}	7.95	4.40		8.33		
3a ^{20,b)}	6.72	4.95	8.17		1.38 $[a(^{CH_3^{3,6}}]$	
5a ^{c)}	6.75	4.9	8.8		0.8 $[a(H^{CH}), 2H]$	2.0039
7a	7.85	4.35		7.85	0.80 [a(H ^{CH}), 2H]	2.0039
8a	6.66	5.22	8.25		0.19 $[a(H^{OCH_3^{3,6}})]$	2.0038
9a	6.75	5.20	8.30			2.0038
11a	7.60	4.95		7.80	$0.20 [a(H^{SCH_3^{3,6}})]$	2.0038
12 a	6.70	5.00	8.40			2.0039
14a	7.82	4.54		7.82		2.0038

Tab. 2. ESR-Kopplungskonstanten (Gauß) und g-Faktoren (± 0.0001) der 1,4-Dihydro-1,2,4,5-
tetrazin-Radikalkationen 1a – 14a in Trifluoressigsäure

a) In Tetrahydrofuran. -b In 2 N H₂SO₄. -c Schlechte Auflösung.

entsprechenden Ausgangsverbindungen mit Bleitetraacetat in Trifluoressigsäure erzeugt. Alle N-unsubstituierten Radikalkationen, **1a**, **3a**²⁰⁾, **5a**, **9a** und **12a**, besitzen, wie der Vergleich ihrer ESR-Daten mit ESR-Ergebnissen entsprechender 1,4-Dimethyl-1,4-dihydro-1,2,4,5-tetrazin-Radikalkationen (**2a**¹⁰⁾, **4a**⁶⁾, **7a**, **11a** und **14a**; Tab. 2) klar zeigt, eine 1,4-Dihydrokonstitution. Unsere Zuordnung der Stickstoffkopplungen zu den 1,4- bzw. 2,5-Positionen stützt sich auf die $a(N)/a(H^{NH})$ - und $a(N)/a(H^{NCH_3})$ -Verhältniszahlen, die erfahrungsgemäß im Bereich 1–1.2 liegen²¹⁾. Die gemessenen *g*-Faktoren entsprechen der Erwartung.

Während aus den 1,4-Dihydroverbindungen (1-14) auf einfache Weise beständige und leicht nachweisbare Radikalkationen (1a - 14a) erzeugt werden können, ließ sich bei der Oxidation der 1,2-Dimethyl-1,2-dihydro-1,2,4,5-tetrazine 15 und 16 dagegen eine Bildung entsprechender 1,2-Dihydro-1,2,4,5-tetrazin-Radikalkationen ESR-spektroskopisch bisher nicht nachweisen.

Schlußfolgerungen

Nach den Röntgenstrukturanalysen besitzen 1, 9, 13 und 3,6-Di(2-pyridyl)-1,4-dihydro-1,2,4,5-tetrazin⁷⁾ im Festzustand eine 1,4-Dihydro-Konstitution. Da in diesen Verbindungen die 3,6-Substituenten (H, SCH₃, C₆H₅, 2-Pyridyl) beträchtlich variieren, kann man annehmen, daß kristallisierte N,N'-Dihydro-1,2,4,5-tetrazine wahrscheinlich generell als 1,4-Dihydroverbindungen vorliegen. Die übereinstimmenden Ergebnisse der Elektronenspektren in den Verbindungsreihen 1–2, 3–4, 5–7, 9–11 und 12–14 zeigen weiterhin, daß auch in Lösung die 1,4-Dihydroform thermodynamisch bevorzugt ist. Aus dem Vergleich der Elektronenspektren mit denen der 1,2-Dimethyl-1,2-dihydro-Derivate 15 und 16 ergibt sich ebenfalls kein Hinweis auf ein gleichzeitiges Auftreten des 1,2-Dihydro-Tautomeren. Damit ist allerdings die Möglichkeit eines Tautomeriegleichgewichtes zwischen 1,4- und 1,2-Dihydroform prinzipiell nicht ausgeschlossen, denn es kann vorwiegend auf der Seite des 1,4-Dihydro-Tautomeren liegen. Alle vorliegenden experimentellen Ergebnisse rechtfertigen eine 1,4-Dihydro-Formulierung der N,N'-Dihydro-1,2,4,5-tetrazine.

Herrn Professor Dr. H. A. Staab danken wir für die Förderung dieser Arbeit.

Experimenteller Teil

Elektronenspektren: Cary 17. – IR-Spektren: Beckman Spektralphotometer 4240. – NMR-Spektren: Bruker-Spectrospin WP-80 und HX-360. – Massenspektren: Du Pont 21-492. – ESR-Spektren: Varian V-4500 (AEG-Kernresonanz-Magnetfeldmesser).

Röntgenstrukturanalysen

Kristalldaten: Die Gitterkonstanten wurden aus 30 Reflexen $\Theta \ge 20^{\circ}$ ermittelt.

1 kristallisiert aus Essigsäure-ethylester/Benzin (Sdp. 40 °C) in hellgelben orthorhombischen Kristallen, Raumgruppe $Pca2_1$. Gitterkonstanten: a = 965.4 (1), b = 547.3 (1), c = 721.6 (1) pm; $V = 3.813 \cdot 10^8$ pm³; Z = 4, $D_x = 1.49$ g/cm³.

9 kristallisiert aus Ethanol in hellgelben monoklinen Kristallen, Raumgruppe C2/c. Gitterkonstanten: a = 1141.3 (1), b = 724.8 (1), c = 1060.4 (1) pm, $\beta = 117.26^{\circ}$ (2); $V = 7.798 \cdot 10^8$ pm³; Z = 4; $D_x = 1.50$ g/cm³; Symmetrie des Moleküls im Kristall C_2 .

13 kristallisiert aus Ethanol in gelben monoklinen Kristallen, Raumgruppe $P2_1/c$. Gitterkonstanten: a = 1342.1 (2), b = 986.1 (2), c = 996.5 (2) pm, $\beta = 99.44^{\circ}$ (3); $V = 13.011 \cdot 10^8$ pm³; Z = 4; $D_x = 1.28$ g/cm³.

16 kristallisiert aus Hexan in gelben orthorhombischen Kristallen, Raumgruppe $P22_12_1$. Gitterkonstanten: a = 596.4 (2), b = 725.7 (2), c = 1671.7 (2) pm; $V = 7.236 \cdot 10^8$ pm³; Z = 2; $D_x = 1.21$ g/cm³; Symmetrie des Moleküls im Kristall C_2 .

Tab. 3. Bindungslängen [in pm], Bindungswinkel [in Grad] und Torsionswinkel [in Grad] (Standardabweichungen in Einheiten der letzten Stelle)

11	N(1) = N(2)	143.7 (2)	C(6)-N(1)-N(2)	113.5 (1)	N(5)-C(6)-N(1)-N(2)	-36.7 (2)
	N(2) - C(3)	127.0 (2)	N(1)-N(2)-C(3)	112.2 (1)	C(6)-N(1)-N(2)-C(3)	36.1 (2)
	C(3) - N(4)	138.6 (2)	N(2)~C(3)-N(4)	123.1 (2)	N(1)-N(2)-C(3)-N(4)	- 0.6 (2)
	N(4) - N(5)	143.6 (2)	C(3)-N(4)-N(5)	113.5 (1)	N(2)-C(3)-N(4)-N(5)	-37.0 (2)
	N(5) - C(6)	126.1 (2)	N(4)-N(5)-C(6)	112.2 (1)	C(3)-N(4)-N(5)-C(6)	36.5 (3)
	C(6) - N(1)	138.4 (2)	N(5)-C(6)-N(1)	123.5 (1)	N(4)-N(5)-C(6)-N(1)	- 0.9 (2)
	N(1) = H(1)	86 (2)	C(6)-N(1)-H(1)	118 (2)		
	C(3) - H(3)	101 (2)	N(2)-N(1)-H(1)	109 (2)		
	N(4) ~ H(4)	91 (2)	N(2)-C(3)-H(3)	118 (2)		
	C(6) - H(6)	95 (2)	N(4)-C(3)-H(3)	119 (1)		
			C(3)-N(4)-H(4)	121 (1)		
			N(5)-N(4)-H(4)	103 (1)		
			N(5)-C(6)-H(6)	117 (1)		
			N(1)-C(6)-H(6)	119 (1)		
9:	N(1) ~ N(2)	144.4 (2)	C(6)=N(1)=N(2)	114.1 (1)	C(6)=N(1)=N(2)=C(3)	-42.3 (1)
	N(2) = C(3)	128.4 (2)	N(1)-N(2)-C(3)	110.3 (1)	N(1)-N(2)-C(3)-N(4)	3.2 (2)
	C(3) - N(4)	138.6 (2)	N(2)-C(3)-N(4)	121.5 (2)	N(2)-C(3)-N(4)-N(5)	40.1 (2)
	C(3) - S(7)	175.0 (2)	N(2)-C(3)-S(7)	122.4 (1)	N(2)-C(3)-S(7)-C(8)	19.6 (2)
	S(7) = C(8)	179.2 (2)	N(4)-C(3)-S(7)	116.1 (1)	S(7)-C(3)-N(4)-H(4)	-15 (1)
	N(1) = H(1)	84 (2)	C(3)-S(7)-C(8)	101.5 (1)		
			N(2) - N(1) - H(1)	109 (2)		
			C(6) = N(1) = H(1)	114 (2)		
13:	N(1) = N(2)	143.0 (1)	C(6) = N(1) = N(2)	113.8 (1)	N(5)=C(6)=N(1)=N(2)	41.3 (2)
-	N(2) = C(3)	127.9 (1)	N(1)-N(2)-C(3)	111.6 (1)	C(6) = N(1) = N(2) = C(3)	-42.3 (2)
	C(3) = N(4)	138.9 (1)	N(2) - C(3) - N(4)	120.6 (1)	N(1) = N(2) = C(3) = N(4)	3.0 (2)
	N(4) = N(5)	143.2 (1)	C(3)-N(4)-N(5)	114.3 (1)	N(2) = C(3) = N(4) = N(5)	39.4 (2)
	N(5) = C(6)	127.6 (1)	N(4)-N(5)-C(6)	111.7 (1)	C(3) = N(4) = N(5) = C(6)	-40.6 (2)
	C(6) = N(1)	139.1 (1)	N(5)-C(6)-N(1)	120.5 (1)	N(4) = N(5) = C(6) = N(1)	1.1 (2)
	N(1) = C(1!)	145.2 (1)	C(6) = N(1) = C(1!)	122.2 (1)	N(2) = C(3) = C(7) = C(8)	43 3 (2)
	C(3) = C(7)	147.7 (1)	N(2) = N(1) = C(1!)	112.1 (1)	N(4) = C(3) = C(7) = C(12)	13 7 (2)
	C(6) = C(13)	148.5 (1)	N(2) = C(3) = C(7)	120.0 (1)	N(5) = C(6) = C(13) = C(14)	61 6 (2)
	C(7) = C(8)	138.8 (1)	N(4) = C(3) = C(7)	119.3 (1)	N(1) = C(6) = C(13) = C(18)	64 h (2)
	C(8) = C(9)	137.7 (1)	C(3) = W(4) = H(4)	116 (1)		04.4 (2)
	C(9) = C(10)	137 9 (2)	N(5) = N(4) = H(4)	109 (1)		
	C(10) = C(10)	127 0 (1)	N(5) = C(6) = C(12)	117 6 (1)		
	C(11) = C(12)	137.0 (1)	N(1) = C(6) = C(13)	122 0 (1)		
	C(12) = C(7)	138 5 (1)	N(1)-0(0)-0(1))	122.0 (1)		
	C(12) = C(17)	127.0 (1)				
	C(14) = C(14)	100 0 (2)				
	C(15) = C(15)	135 8 (2)				
	C(15) = C(10)	135.0 (2)				
	C(10) = C(17)	127 6 (1)				
	C(18) = C(18)	137.0 (1)				
	N(11) N(11)	88 (1)				
	a(4) = n(4)	00 (1)				
16,	N(2) = C(3)	138.7 (2)	N(2)_C(3)_N(4)	123.4 (2)	C(5)_N(1)_N(2)_C(2)	10 10 (2)
<u></u>	C(3) = N(4)	129.6 (2)	C(3)_N(4)_N(5)	116.6 (1)	N(2) - C(2) - N(1) - N(2) - D(3)	40.4 (2)
	N(4) = N(5)	141.9 (3)	c(6) = N(1) = c(11)	118 8 (2)	C(3) N(4) N(5) C(5)	- 9.0 (2)
	n(4) = n(5) N(1) = C(1)	144 7 (3)	$N(2) \cdot N(1) = C(1)$	112 2 (2)	U(3) = W(4) = W(3) = U(6)	20.2 (2)
	C(3) = C(7)	148 5 (2)	N(2) = C(2) = C(1')	117 6 (2)	H(2) = U(3) = U(7) = U(6)	-33.2 (2)
	c(7) = c(8)	137.8 (2)	N(4)_C(3)_C(7)	119.0 (2)	N(L) = C(3) = C(7) = C(12) N(L) = C(3) = C(7) = C(9)	149.0 (2)
	C(8) = C(9)	137.9 (3)	A(7/-0(3/-0(/)	11310 (2)	N(h) = C(2) = C(7) = C(8)	143.4 (2)
	C(0) = C(0)	136 7 (11)			a(+) = c(3) = c(1) = c(12) c(11) = F(1) = F(2)	-33-8 (2)
	C(10) = C(10)	128 2 (4)			U(1')=N(1)=N(2)=C(2')	120.9 (2)
	C(10) = C(11)	127 5 (2)				
	C(12) = C(12)	138 8 (3)				
	U(12)- U(1)	1 0 . 0 (3)				

Tab. 4. Abstände [in pm] der Atome von gegebenen Ebenen

```
Least-Squares-Ebene durch
                                 ₩(2)
                                         C(3)
                                                N(5)
                                                        C(6)
 1:
                                               -1.8
                                -1.8
                                         1.8
     Abweichungen
                                                        1.8
     N(1) 40.6
                 N(4) 41.0 H(1) 24
                                         H(3) -27
                                                    H(4) 19
                                                               H(6) -24
     Least-Squares-Ebene durch
                                 N(2)
                                         C(3)
                                                N(5)
                                                        C(6)
      Abweichungen
                                -3.3
                                         3.3
                                               -3.3
                                                        3.3
     N(1) 45.8 H(1) 30 S(7) -35.8
                                         C(8)
                                               -20.8
     Least-Squares-Ebene durch
                                 N(2)
                                         C(3)
                                                N(5)
                                                        C(6)
13:
      Abweichungen
                                -2.3
                                         2.3
                                               -2.3
                                                        2.3
     N(1) 46.1 N(4) 44.2 C(11) 54.8 H(4) 31
                                                      C(7) -33.7
                                                                   c(8) 12.6 c(9) -15.4
     C(10) -92.5 C(11) -140.2 C(12) -109.9 C(13) -41.3
                                                                C(14) 25.9
                                                                              C(15) -21.4
     C(16) -132.8 C(17) -197.3 C(18) -153.0
      Least-Squares-Ebene durch
                                 N(1)
                                         N(2)
                                                C(3)
                                                        N(4)
                                                                N(5)
                                                                        C(6)
      Abweichungen
                               -22.6
                                        22.6
                                               -2.9
                                                      -16.7
                                                               16.7
                                                                        2.9
      C(1') -153.6 C(2') 153.6
16:
     Least-Squares-Ebene durch
                                 C(3)
                                         N(4)
                                                N(5)
                                                        C(6)
      Abweichungen
                                 6.3
                                      -11.8
                                                11.8
                                                       -6.3
      N(1) -27.2 N(2) 27.2 C(1') -159
                                            C(21) 159
                                                        C(7) -3.2
                                                                      C(8) +58.5
      c(9) -76.7
                  C(10) -37.6
                                C(11)
                                        20.3
                                                C(12)
                                                        37.8
```

Tab. 5. Intermolekulare N-H···N Abstände kleiner als 370 pm

<u>1:</u>	N(1,x,y,z)	1	N(5, x'	-	0.5 +	x, y' =	1 - y, z	' = z)	302
	H(1,x,y,z)	1	N(5, x	=	0.5 +	x, y' =	1 - y, z	' = z)	218
	N(2,x,y,z)	1	N(4, x'	-	0.5 +	x, y' =	-y, z' =	z)	308
	N(2,x,y,z)	1	H(4, x'	' =	0.5 +	x, y' =	-y, z' =	2)	219
<u>9:</u>	N(1,x,y,z)	1	N(2, x'	-	1 - x,	y' = 1	- y, z'	= 1 - z)	304
	H(1,x,y,z)	1	N(2, x	• =	1 ÷ x,	y' = 1	- y, z'	= 1 - z)	232
13:	N(2,x,y,z)	1	N(4, x'	-	x, y'	= 0.5 -	y, z' =	0.5 + z)	310
	N(2,x,y,z)	1	H(4, x		х, у'	= 0.5 -	y, z' =	0.5 + z)	226

Intensitätsmessung: Ein Kristall von 1 mit den Abmessungen $0.3 \times 0.2 \times 0.1$ mm wurde auf einem Vierkreis-Diffraktometer (Syntex P2) mit Graphit-monochromatisierter Mo- K_{α} -Strahlung ($\lambda_{K_{\alpha}} = 71.069$ pm) vermessen. Bis sin $\Theta/\lambda = 6.83$ nm⁻¹ registrierten wir 555 Reflexe ($\Theta/2\Theta$ -Scan), von denen 528 mit $I > 1.96 \sigma(I)$ als beobachtet eingestuft wurden.

Kristallabmessungen von 9: $0.1 \times 0.1 \times 0.3$ mm. Bis $\sin \Theta/\lambda = 6.63$ nm⁻¹ registrierten wir 944 symmetrieunabhängige Reflexe, von denen 848 mit $I > 1.92 \sigma(I)$ als beobachtet eingestuft wurden.

Kristallabmessungen von 13: $0.2 \times 0.2 \times 0.4$ mm. Bis sin $\Theta/\lambda = 6.62$ nm⁻¹ registrierten wir 3248 symmetrieunabhängige Reflexe, von denen 2360 mit $I > 1.96 \sigma(I)$ als beobachtet eingestuft wurden.

Kristallabmessungen von 16: $0.1 \times 0.3 \times 0.4$ mm. Bis sin $\Theta/\lambda = 6.62$ nm⁻¹ registrierten wir 1088 symmetrieunabhängige Reflexe, von denen 805 mit $I > 1.96 \sigma(I)$ als beobachtet eingestuft wurden.

Strukturbestimmung: Die Strukturen wurden nach der direkten Methode gelöst (Programm Multan²²⁾) und mit einem Full-Matrix-Least-Squares-Programm in mehreren Cyclen verfeinert.

Tab. 6. Atomkoordinaten, Parameter anisotroper Temperaturfaktoren [in pm²] bzw. isotroper Temperaturfaktoren [in pm² · 10²]; in Klammer Standardabweichungen in Einheiten der letzten Stelle. Anisotrope Temperaturfaktoren sind definiert nach $T = \exp[-2\pi^2(U_{11}h^2a^{*2} + \cdots + 2U_{12}hka^*b^* + \cdots)]$, isotrope nach $T = \exp[-8\pi^2 U_{iso}(\sin \Theta/\lambda)^2]$

<u>1:</u>	Atom	x	У	2	. U ₁₁	^U 22	U ₃₃	0 ₁₂	^U 13	0 ₂₃
	N (1)	0.0074 (1)	0.3598 (2)	-0.0002 (3)	293 (5)	351 (6)	478 (8)	38 (5)	70 (6)	19 (7)
	N (2)	-0.0119 (1)	0.1919 (3)	-0.1512 (3)	281 (5)	400 (6)	515 (8)	-55 (5)	-57 (6)	36 (8)
	C (3)	0.0954 (2)	0.0637 (3)	-0.1812 (3)	351 (7)	335 (7)	429 (9)	-49 (6)	-16 (7)	-27 (7)
	N (h)	0.2165 (1)	0.0873 (3)	-0.0797 (3)	300 (6)	340 (6)	483 (7)	35 (5)	-2 (6)	-46 (6)
	a (4) N (5)	0.2475 (2)	0 3300 (2)	-0.0288 (3)	287 (5)	301 (6)	470 (8)	-57 (6)	-20 (6)	-41 (6)
	0 (6)	0.1208 (2)	0.1555 (2)	0.0002 (1)	270 (8)	202 (7)	#20 (Q)	-25 (6)	7 (7)	-16 (8)
	Atom	x	v.	z	0,	Atom	x	-L) (0) y	z	Uino
										130
	H (1) H (3)	~0.0610(20) 0.0927(16)	0.4592(33) -0.0588(30)	0.0033(46) -0.2853(35)	6.4 (6) 5.0 (5)	H(4) H(6)	0.2985(18) 0.1516(16)	0.0308(40) 0.6209(30)	-0.1237 0.0452	(32) 5.7(7) (32) 4.9(5)
<u>9:</u>	Atom	x	у	z	υ ₁ ,	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
	N (1)	0.0202 (1)	0 5520 (3)	0 1167 (1)	208 (6)	606 (0)	247 (6)	52 (6)	145 (5)	48 (6)
	N (1)	0.4392 (1)	0.5530 (2)	0.1107 (1)	290 (0)	621 (0)	2772 (6)	52 (0) 17 (6)	155 (5)	-7 (6)
	M (2)	0.42/1 (1)	0.4054 (2)	0.1801 (7)	203 (0)	101 (0)	212 (0)	-17 (0)	155 (6)	-5 (6)
		0.3/12 (2)	0.4943 (2)	0.1091 (2)	295 (2)	PDF (II)	205 (1)	30 (0)	121 (2)	53 (3)
	S (7)	0.2047 (1)	0.4405 (1)	0.0849 (1)	205 (2)	025 (4)	310 (2)	-11 (2)	131 (2)	-52 (2)
	C (8)	0.1418 (2)	0.4611 (3)	0.2112 (2)	408(10)	686(13)	525(11)	-91 (9)	309 (9)	-90 (2)
	Atom	x	У	z	0 _{iso}	Atom	x	У	Z	U _{iso}
	H (1)	0.4005(22)	0.5312(28)	0.0292(23)	5.7 (6)	H(8B)	0.1564(23)	0.5740(33)	0.2476	(24) 8.2(7)
	H(8A)	0.1838(21)	0.3807(32)	0.2862(21)	6.9 (6)	H(8C)	0.0521(24)	0.4228(33)	0.1605	6(25) 8.4(7)
<u>:</u>	Atom	x	у	2	U ₁₁	U ₂₂	^U 33	U ₁₂	U ₁₃	U ₂₃
	N (1)	0.8588 (1)	0.0808 (1)	1.0362 (1)	381 (5)	508 (7)	378 (5)	-55 (5)	36 (4)	42 (5)
	N (2)	0.9472 (1)	0.1611 (1)	1.0781 (1)	354 (5)	512 (6)	341 (5)	-29 (5)	44 (4)	8 (5)
	C (3)	0.9831 (1)	0.2073 (1)	0.9761 (1)	344 (6)	457 (7)	314 (6)	22 (6)	45 (5)	-28 (6)
	N (4)	0.9343 (1)	0.1831 (1)	0.8444 (1)	370 (5)	629 (7)	309 (5)	-56 (5)	47 (4)	-17 (5)
	N (5)	0.8264 (1)	0,1905 (1)	0.8280 (1)	369 (5)	610 (7)	364 (5)	-79 (5)	9 (5)	14 (6)
	Ç (6)	0.7927 (1)	0.1360 (1)	0.9278 (1)	382 (6)	481 (8)	380 (6)	-59 (6)	26 (5)	-20 (6)
	C (1')	0.8235 (1)	0.0161 (2)	1,1505 (1)	491 (7)	553 (8)	444 (7)	-57 (7)	112 (6)	77 (7)
	C (7)	1.0789 (1)	0.2840 (1)	0.9976 (1)	350 (6)	502 (7)	300 (5)	-6 (6)	63 (5)	-53 (6)
	C (8)	1,1592 (1)	0.2370 (2)	1.0921 (1)	450 (7)	524 (8)	387 (6)	9 (7)	5 (6)	-33 (6)
	C (9)	1.2503 (1)	0 3044 (2)	1,1098 (2)	410 (7)	722 (0)	536 (8)	16 (8)	-69 (7)	-62 (8)
	C(10)	1 2618 (1)	0, 1001 (2)	1 0365 (2)	436 (7)	703 (8)	589 (8)	-173 (8)	36 (7)	-60 (9)
	C(11)	1 1825 (1)	0 4682 (2)	0 0 0 0 2 (2)	562 (8)	70/ (8)	525 (B)	172 (8)	68 (7)	=00 (9) 81 (8)
	C(12)	1.0016 (1)	0.4002 (2)	0.9443 (2)	100 (0)	621 (0)	523 (8)	-1/3 (0)	20 (1)	51 (0) 53 (7)
	C(12)	0.6916 (1)	0.1300 (2)	0.0223 (1)	378 (7)	E07 (0)	206 (7)	-37 (7)	111 (6)	116 (7)
	C(10)	0.6010 (1)	0.1349 (2)	0.9233 (1)	570 (8)	082 (0)	490 (7) 205 (B)	-79 (1)	42 (7)	68 (0)
	C(14)	0.0210 (1)	0.00/2 (2)	0.0195 (2)	600 (0)	1350/201	495 (0) 672(10)	-203 (9)	100 (9)	334(10)
	0(15)	0.5101 (1)	0.0/40 (2)	0.0000 (2)	000 (9)	130(20)	012(10)	~303(10)	PD (0)	234(10)
		0.4743 (1)	0.1467 (3)	0.9040 (2)	414 (0)	1345(20)	940 (9)	-42(10)	02 (0)	403(10)
	C(17)	0.5342 (1)	0.2120 (2)	1.0068 (2)	402 (8)	962 (9)	1053 (9)	60(10)	179 (9)	125 (9)
	(10)	0.0370 (1)	0.2006 (2)	1.0187 (2)	440 (8)	691(10)	762 (9)	-35 (8)	137 (7)	-11 (9)
			y		lso	ACOU	*	y	z	Uiso
	H (4)	0.955 (1)	0.232 (1)	0.780 (1)	6.4 (5)	H(15)	0.489 (1)	0.023 (2)	0.750	(2) 10.0 (6)
	H (8)	1.147 (1)	0.153 (1)	1.140 (1)	5.4 (4)	H(16)	0.400 (1)	0.152 (2)	0.900	(2) 10.1 (6)
	н (9)	1.307 (1)	0.267 (2)	1.175 (2)	6.9 (5)	H(17)	U.499 (1)	0.266 (2)	1.073	(2) 11.9 (7)
	H(10)	7.328 (1)	0.470 (2)	1.051 (2)	7.5 (5)	H(18)	0.684 (1)	0.255 (2)	1.094	(2) 8.3 (5)
	H(11)	1.192 (1)	0.545 (2)	0.094 (2)	0.9 (5)	H(1A)	0.8/9 (1)	-0.037 (1)	1.198	(1) 5.5 (4)
			A 10A (+)	- 060 //:					1.117	(1) 5.5 (4)
	H(12)	1.038 (1)	0.432 (1)	0.858 (1)	5.7 (4)	H(1B)	0.767 (1)	-0.039 (1)		
	H(12) H(14)	1.038 (1) 0.655 (1)	0.432 (1) 0.011 (2)	0.858 (1) 0.754 (1)	5.7 (4) 6.3 (4)	H(1B) H(1C)	0.767 (1) 0.799 (1)	0.039 (1)	1.212	(2) 7.3 (5)
5 :	H(12) H(14) Atom	1.038 (1) 0.655 (1) x	0.432 (1) 0.011 (2) y	0.858 (1) 0.754 (1) z	5.7 (4) 6.3 (4) U ₁₁	H(1B) H(1C) ^U 22	0.767 (1) 0.799 (1) 0 ₃₃	-0.039 (1) 0.077 (2) U ₁₂	1.212 ^U 13	(2) 7.3 (5)
	H(12) H(14) Atom N (2)	1.038 (1) 0.655 (1) x 0.6444 (3)	0.432 (1) 0.011 (2) y 0.9050 (3)	0.858 (1) 0.754 (1) z 0.0118 (1)	5.7 (4) 6.3 (4) ^U 11 426(10)	H(1B) H(1C) U ₂₂ 405(10)	0.767 (1) 0.799 (1) U ₃₃ 545(10)	-0.039 (1) 0.077 (2) U ₁₂ -9(10)	1.212 U ₁₃ 21(10)	(2) 7.3 (5) U ₂₃ -23(10)
	H(12) H(14) Atom N (2) C (3)	1.038 (1) 0.655 (1) x 0.6444 (3) 0.8464 (5)	0.432 (1) 0.011 (2) y 0.9050 (3) 0.8522 (4)	0.858 (1) 0.754 (1) z 0.0118 (1) 0.0459 (2)	5.7 (4) 6.3 (4) U ₁₁ 426(10) 414(10)	H(1B) H(1C) U ₂₂ 405(10) 542(10)	0.767 (1) 0.799 (1) U ₃₃ 545(10) 529(10)	-9(10) 26(20)	1.212 U ₁₃ -21(10) -22(10)	(2) 7.3 (5) U ₂₃ -23(10) 1(10)
4	H(12) H(14) Atom N (2) C (3) N (4)	1.038 (1) 0.655 (1) x 0.6444 (3) 0.8464 (5) 1.0349 (4)	0.432 (1) 0.011 (2) y 0.9050 (3) 0.8522 (4) 0.9345 (4)	0.858 (1) 0.754 (1) z 0.0118 (1) 0.0459 (2) 0.0315 (2)	5.7 (4) 6.3 (4) U ₁₁ 426(10) 414(10) 439(10)	H(1B) H(1C) ^U 22 405(10) 542(10) 832(20)	0.767 (1) 0.799 (1) U ₃₃ 545(10) 529(10) 985(20)	-9(10) -60(10)	1.212 U ₁₃ -21(10) -22(10) -85(10)	(2) 7.3 (5) U ₂₃ -23(10) 1(10) 337(20)
4	H(12) H(14) Atom N (2) C (3) N (4) C (2')	1.038 (1) 0.655 (1) x 0.6444 (3) 0.8464 (5) 1.0349 (4) 0.5440 (5)	0.432 (1) 0.011 (2) y 0.9050 (3) 0.8522 (4) 0.9345 (4) 0.7872 (4)	0.858 (1) 0.754 (1) z 0.0118 (1) 0.0459 (2) 0.0315 (2) -0.0482 (2)	5.7 (4) 6.3 (4) U ₁₁ 426(10) 414(10) 439(10) 630(20)	H(1B) H(1C) ^U 22 405(10) 542(10) 832(20) 538(20)	0.767 (1) 0.799 (1) U ₃₃ 545(10) 529(10) 985(20) 671(20)	-0.039 (1) 0.077 (2) U ₁₂ -9(10) 26(20) -60(10) -3(20)	1.212 U ₁₃ -21(10) -22(10) -85(10) -103(20)	(2) 7.3 (5) U ₂₃ -23(10) 1(10) 337(20) -90(20)
-	H(12) H(14) Atom N (2) C (3) N (4) C (2') C (7)	1.038 (1) 0.655 (1) x 0.6444 (3) 0.8464 (5) 1.0349 (4) 0.5440 (5) 0.8415 (5)	0.432 (1) 0.011 (2) y 0.9050 (3) 0.8522 (4) 0.9345 (4) 0.7872 (4) 0.7001 (4)	0.858 (1) 0.754 (1) z 0.0118 (1) 0.0459 (2) 0.0315 (2) -0.0482 (2) 0.1053 (1)	5.7 (4) 6.3 (4) U ₁₁ 426(10) 414(10) 439(10) 630(20) 494(10)	H(1B) H(1C) ^U 22 405(10) 542(10) 832(20) 538(20) 455(10)	0.767 (1) 0.799 (1) U ₃₃ 545(10) 529(10) 985(20) 671(20) 517(10)	-0.039 (1) 0.077 (2) -9(10) 26(20) -60(10) -3(20) -13(20)	1.212 U ₁₃ -21(10) -22(10) -85(10) -103(20) -65(20)	(2) 7.3 (5) U ₂₃ -23(10) 1(10) 337(20) -90(20) -15(10)
	H(12) H(14) Atom C (3) N (4) C (2') C (7) C (8)	1.038 (1) 0.655 (1) x 0.6444 (3) 0.8464 (5) 1.0349 (4) 0.5440 (5) 0.8415 (5) 0.6581 (5)	0.432 (1) 0.011 (2) y 0.9050 (3) 0.8522 (4) 0.9345 (4) 0.7872 (4) 0.7001 (4) 0.6795 (4)	0.858 (1) 0.754 (1) z 0.0118 (1) 0.0459 (2) 0.0315 (2) -0.0482 (2) 0.1053 (1) 0.1546 (2)	5.7 (4) 6.3 (4) U ₁₁ 426(10) 414(10) 439(10) 630(20) 494(10) 684(20)	H(1B) H(1C) U ₂₂ 405(10) 542(10) 832(20) 538(20) 455(10) 533(20)	0.767 (1) 0.799 (1) 545(10) 529(10) 985(20) 671(20) 517(10) 563(20)	-0.039 (1) 0.077 (2) U ₁₂ -9(10) 26(20) -60(10) -3(20) -13(20) -1(20)	1.212 U ₁₃ -21(10) -22(10) -85(10) -103(20) -65(20) 29(20)	(2) 7.3 (5) U ₂₃ -23(10) 1(10) 337(20) -90(20) -15(10) -58(20)
<u>.</u>	H(12) H(14) Atom C (3) N (4) C (2') C (7) C (7) C (8) C (9)	1.038 (1) 0.655 (1) x 0.6444 (3) 0.8464 (5) 1.0349 (4) 0.5440 (5) 0.6415 (5) 0.6581 (5) 0.6600 (6)	0.432 (1) 0.011 (2) y 0.9050 (3) 0.8522 (4) 0.9345 (4) 0.7001 (4) 0.6795 (4) 0.6795 (4)	0.858 (1) 0.754 (1) z 0.0118 (1) 0.0459 (2) 0.0315 (2) 0.1053 (1) 0.1546 (2) 0.2138 (2)	5.7 (4) 6.3 (4) U ₁₁ 426(10) 414(10) 439(10) 630(20) 494(10) 684(20) 892(20)	H(1B) H(1C) U ₂₂ 405(10) 542(10) 832(20) 538(20) 455(10) 533(20) 741(20)	0.767 (1) 0.799 (1) 0.33 545(10) 529(10) 985(20) 671(20) 517(10) 563(20) 585(20)	-0.039 (1) 0.077 (2) U ₁₂ -9(10) 26(20) -60(10) -3(20) -13(20) -1(20) -135(20)	1.212 U ₁₃ -21(10) -22(10) -85(10) -103(20) -65(20) 29(20) 57(20)	(2) 7.3 (5) U ₂₃ -23(10) 1(10) 337(20) -90(20) -15(10) -58(20) 88(20)
-	H(12) H(14) Atom C (3) N (4) C (2') C (7) C (8) C (9) C (10)	1.038 (1) 0.655 (1) x 0.6444 (3) 0.8464 (5) 1.0349 (4) 0.5440 (5) 0.6415 (5) 0.6581 (5) 0.6600 (6) 0.8405 (7)	0.432 (1) 0.011 (2) y 0.9050 (3) 0.8522 (4) 0.7372 (4) 0.7675 (4) 0.5472 (4) 0.5472 (4) 0.5472 (4)	0.858 (1) 0.754 (1) z 0.0118 (1) 0.0459 (2) 0.0315 (2) -0.0462 (2) 0.1536 (2) 0.2138 (2) 0.2238 (2)	5.7 (4) 6.3 (4) U ₁₁ 426(10) 414(10) 439(10) 630(20) 494(10) 684(20) 892(20) 1192(30)	H(1B) H(1C) ^U 22 405(10) 542(10) 632(20) 538(20) 455(10) 533(20) 741(20) 744(20)	0.767 (1) 0.799 (1) 545(10) 529(10) 985(20) 671(20) 517(10) 563(20) 585(20) 724(20)	-0.039 (1) 0.077 (2) U ₁₂ -9(10) 26(20) -60(10) -3(20) -13(20) -135(20) -139(20)	1.212 U ₁₃ -21(10) -22(10) -85(10) -103(20) -65(20) 29(20) 57(20) -295(20)	(2) 7.3 (5) U ₂₃ -23(10) 1(10) 337(20) -90(20) -15(10) -58(20) 88(20) 264(20)
	H(12) H(14) Atom C (3) N (4) C (2') C (7) C (8) C (9) C(10) C(11)	1.038 (1) 0.655 (1) x 0.6444 (3) 0.8464 (5) 1.0349 (4) 0.5440 (5) 0.6415 (5) 0.6581 (5) 0.6600 (6) 0.8405 (7) 1.0239 (6)	0.432 (1) 0.011 (2) y 0.9050 (3) 0.8522 (4) 0.73872 (4) 0.7695 (4) 0.5472 (4) 0.4331 (5) 0.4502 (5)	0.858 (1) 0.754 (1) z 0.0118 (1) 0.0459 (2) 0.0315 (2) 0.0462 (2) 0.1053 (1) 0.1546 (2) 0.2232 (2) 0.7231 (2)	5.7 (4) 6.3 (4) U ₁₁ 426(10) 414(10) 439(10) 630(20) 494(10) 684(20) 892(20) 1192(30) 831(20)	H(1B) H(1C) U ₂₂ 405(10) 542(10) 632(20) 538(20) 455(10) 533(20) 741(20) 744(20) 707(20)	0.767 (1) 0.799 (1) 0.799 (1) 0.33 545(10) 529(10) 985(20) 517(10) 563(20) 585(20) 724(20) 724(20)	-0.039 (1) 0.077 (2) U ₁₂ -9(10) 26(20) -60(10) -3(20) -13	1.212 U ₁₃ -21(10) -22(10) -85(10) -103(20) -65(20) 29(20) 57(20) -295(20) -264(20)	(2) 7.3 (5) U ₂₃ -23(10) 1(10) 337(20) -90(20) -15(10) -58(20) 88(20) 264(20) 223(20)
	H(12) H(14) Atom N (2) C (3) N (4) C (2*) C (7) C (8) C (9) C (10) C (11) C (12)	1.038 (1) 0.655 (1) x 0.6444 (3) 0.8464 (5) 1.0349 (4) 0.5440 (5) 0.64515 (5) 0.66581 (5) 0.6650 (6) 0.6405 (7) 1.0239 (6) 1.0235 (5)	0.432 (1) 0.011 (2) y 0.9050 (3) 0.8522 (4) 0.9345 (4) 0.7001 (4) 0.7001 (4) 0.6795 (4) 0.4331 (5) 0.4502 (5) 0.55828 (5)	0.858 (1) 0.754 (1) z 0.0118 (1) 0.0459 (2) 0.0315 (2) -0.0482 (2) 0.1053 (1) 0.1546 (2) 0.2232 (2) 0.1731 (2) 0.1143 (2)	5.7 (4) 6.3 (4) U ₁₁ 426(10) 414(10) 439(10) 630(20) 494(10) 892(20) 1192(30) 831(20) 571(20)	H(1B) H(1C) 405(10) 542(10) 832(20) 538(20) 455(10) 538(20) 741(20) 741(20) 707(20) 690(20)	0.767 (1) 0.799 (1) 033 545(10) 529(10) 985(20) 671(20) 517(10) 563(20) 585(20) 585(20) 585(20) 941(20) 740(20)	-0.039 (1) 0.077 (2) U ₁₂ -9(10) 26(20) -60(10) -3(20) -13(20) -13(20) -135(20) -139(20) 55(20) -8(20)	1.212 U ₁₃ -21(10) -22(10) -85(10) -103(20) 29(20) 57(20) -295(20) -295(20) -264(20) -102(20)	(2) 7.3 (5) U23 -23(10) 1(10) 337(20) -90(20) -15(10) -55(20) 88(20) 264(20) 223(20) 77(20)
5:	H(12) H(14) Atom N (2) C (3) N (4) C (2') C (7) C (8) C (9) C (10) C (11) C (12) Atom	1.038 (1) 0.655 (1) x 0.6444 (3) 0.8464 (5) 1.0349 (4) 0.5440 (5) 0.8415 (5) 0.6581 (5) 0.6660 (6) 0.8405 (7) 1.0239 (6) 1.0235 (5) x	0.432 (1) 0.011 (2) y 0.9050 (3) 0.8522 (4) 0.7872 (4) 0.7872 (4) 0.7075 (4) 0.5795 (4) 0.4331 (5) 0.4331 (5) 0.4502 (5) 0.5828 (5) y	0.868 (1) 0.754 (1) 2 0.0118 (1) 0.0459 (2) 0.0315 (2) 0.0153 (1) 0.1546 (2) 0.2232 (2) 0.1731 (2) 0.1143 (2) 2	5.7 (4) 6.3 (4) U ₁₁ 426(10) 414(10) 439(10) 630(20) 439(10) 684(20) 892(20) 1192(30) 831(20) 571(20) U ₁₈₀	H(1B) H(1C) U ₂₂ 405(10) 832(20) 538(20) 455(10) 533(20) 744(20) 744(20) 707(20) 690(20) Atom	0.767 (1) 0.799 (1) 545(10) 529(10) 985(20) 671(20) 553(20) 563(20) 724(20) 941(20) 744(20) x	-0.039 (1) 0.077 (2) -9(10) 26(20) -60(10) -3(20) -13(20) -13(20) -135(20) -135(20) -198(20) 55(20) -8(20) y	1.212 U ₁₃ -21(10) -85(10) -103(20) -65(20) 29(20) 57(20) -295(20) -295(20) -102(20) z	(2) 7.3 (5) U ₂₃ -23(10) 1(10) 337(20) -90(20) -15(10) -58(20) 88(20) 264(20) 223(20) 77(20) U ₁₅₀
<u>-</u>	H(12) H(14) Atom N (2) C (3) N (4) C (2') C (7) C (7) C (7) C (8) C (9) C(10) C(11) C(12) Atom H (8)	1.038 (1) 0.655 (1) x 0.6444 (3) 0.8464 (5) 1.0349 (4) 0.5440 (5) 0.6581 (5) 0.6581 (5) 0.6600 (6) 0.8405 (5) 1.0235 (5) x 0.547 (5)	0.432 (1) 0.011 (2) y 0.9050 (3) 0.8522 (4) 0.7872 (4) 0.7872 (4) 0.7675 (4) 0.5472 (4) 0.4331 (5) 0.4502 (5) 0.5828 (5) y 0.763 (4)	0.658 (1) 0.754 (1) 2 0.0118 (1) 0.0459 (2) 0.0355 (2) -0.0482 (2) 0.01536 (2) 0.1536 (2) 0.1546 (2) 0.2232 (2) 0.1731 (2) 0.1743 (2) 2 2 2	5.7 (4) 6.3 (4) U ₁₁ 426(10) 414(10) 439(10) 630(20) 494(10) 684(20) 892(20) 1192(30) 831(20) 571(20) U ₁₈₀ 6.3 (8)	H(1B) H(1C) U22 405(10) 532(20) 538(20) 455(10) 538(20) 741(20) 741(20) 707(20) 690(20) Atom H(12)	0.767 (1) 0.799 (1) U ₃₃ 545(10) 529(10) 985(20) 671(20) 563(20) 543(20) 941(20) 744(20) x 1.147 (4)	-0.39 (1) 0.077 (2) -9(10) 26(20) -50(10) -3(20) -13(20) -13(20) -135(20) -135(20) -135(20) -198(20) 55(20) -8(20) y	1.212 U13 -21(10) -22(10) -85(10) -103(20) -65(20) 29(20) 57(20) -295(20) -295(20) -295(20) -264(20) -102(20) Z	(2) 7.3 (5) U_{23} -23(10) 1(10) 337(20) -90(20) -15(10) -58(20) 88(20) 263(20) 223(20) 77(20) U_{190} (1) 5 8 (2)
	H(12) H(14) Atom N (2) C (3) N (4) C (2') C (7) C (8) C (7) C (7) C (8) C (7) C (10) C (11) C (12) Atom H (8) H (9)	1.038 (1) 0.655 (1) x 0.6444 (3) 0.8464 (5) 1.0349 (4) 0.5440 (5) 0.6581 (5) 0.6581 (5) 0.6600 (6) 0.8405 (7) 1.0239 (6) 1.0235 (5) x 0.547 (5) 0.5547 (4)	0.432 (1) 0.011 (2) y 0.9050 (3) 0.8522 (4) 0.7872 (4) 0.7001 (4) 0.5975 (4) 0.5472 (4) 0.4331 (5) 0.4502 (5) 0.4502 (5) y 0.763 (4) 0.537 (4)	0.658 (1) 0.754 (1) 2 0.0118 (1) 0.0495 (2) 0.0315 (2) 0.0452 (2) 0.0452 (2) 0.233 (1) 0.1546 (2) 0.233 (2) 0.233 (2) 0.233 (2) 0.233 (2) 0.1731 (2) 0.1143 (2) 2 0.044 (1) 0.247 (2)	5.7 (4) 6.3 (4) U ₁₁ 426(10) 414(10) 439(10) 630(20) 494(10) 684(20) 892(20) 1192(30) 831(20) 571(20) U ₁₈₀ 6.3 (8) 5.4 (7)	H(1B) H(1C) ^U 22 405(10) 542(10) 538(20) 455(10) 538(20) 455(10) 538(20) 744(20) 707(20) 690(20) Atom H(12) H(24)	0.767 (1) 0.799 (1) 0.33 545(10) 529(10) 985(20) 571(10) 5671(20) 517(10) 563(20) 545(20) 724(20) 724(20) 7440(20) x 1.147 (4) 0.360 (8)	-0.039 (1) 0.077 (2) U ₁₂ -9(10) 26(20) -60(10) -3(20) -13(20) -13(20) -13(20) -13(20) -13(20) -13(20) -13(20) -13(20) -3(2) -	1.212 U ₁₃ -21(10) -22(10) -35(10) -103(20) -65(20) 29(20) -29(20) -295(20) -295(20) -264(20) -102(20) z 0.081 0.081	(2) 7.3 (5) U_{23} -23(10) 1(10) 337(20) -90(20) -15(10) -58(20) 88(20) $26\lambda(20)$ 223(20) 77(20) U_{130} (1) 5.8 (8) (3) 16 0(20)
52	H(12) H(14) Atom N (2) C (3) N (4) C (2') C (7) C (7) C (7) C (7) C (7) C (7) C (10) C (11) C (12) Atom H (8) H (9) H (10)	1.038 (1) 0.655 (1) x 0.6444 (3) 0.8464 (5) 1.0349 (4) 0.5440 (5) 0.6415 (5) 0.6415 (5) 0.6600 (6) 0.6600 (5) 1.0239 (6) 1.0235 (5) x 0.547 (5) 0.653 (4) 0.663 (4)	0.432 (1) 0.011 (2) y 0.9050 (3) 0.8522 (4) 0.7872 (4) 0.7001 (4) 0.7075 (4) 0.5472 (4) 0.4331 (5) 0.4502 (5) 0.4502 (5) y 0.763 (4) 0.532 (4) 0.532 (4) 0.532 (4)	0.658 (1) 0.754 (1) 2 0.0118 (1) 0.0459 (2) 0.035 (2) -0.0482 (2) 0.1053 (1) 0.1546 (2) 0.2232 (2) 0.1731 (2) 0.1743 (2) 2 0.148 (1) 0.246 (2) 0.246 (2)	5.7 (4) 6.3 (4) U ₁₁ 426(10) 414(10) 439(10) 630(20) 494(10) 892(20) 1192(30) 831(20) 571(20) U ₁₈₀ 6.3 (8) 5.4 (7) 7.6 (6)	H(1B) H(1C) U22 405(10) 832(20) 538(20) 455(10) 533(20) 741(20) 741(20) 741(20) 744(20) 690(20) Atom H(12) H(2A) H(2A)	0.767 (1) 0.799 (1) 0.33 545(10) 529(10) 985(20) 671(20) 517(10) 553(20) 724(20) 744(20) 744(20) x 1.147 (4) 0.360 (6) 0.617 (5)	-0.039 (1) 0.077 (2) U ₁₂ -9(10) 26(20) -60(10) -3(20) -13(20) -3(20)	1.212 U ₁₃ -21(10) -22(10) -22(10) -103(20) 29(20) 57(20) -295(20) -295(20) -264(20) 2 0.081 -0.050 -0.050	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Dabei wurden die Schweratome (C, N, S) mit anisotropen und die Wasserstoffe mit isotropen Temperaturfaktoren eingeführt. Bei der letzten Verfeinerung erhielten wir folgende *R*-Werte $(R = \sum ||F_{\alpha}| - |F_{c}|| / \sum |F_{\alpha}|)$: 1, 0.029; 9, 0.033; 13, 0.042; 16, 0.057.

1,4-Dihydro-1,2,4,5-tetrazin (1)⁹⁾: Aus Essigsäure-ethylester/Benzin (Sdp. 40 °C) heligelbe Kristalle vom Schmp. 124 – 125 °C. – ¹H-NMR ([D₆]DMSO, 80 MHz): $\delta = 6.61$ (s; 2H, CH), 8.02 (s; 2H, NH).

1,4-Dimethyl-1,4-dihydro-1,2,4,5-tetrazin (2)¹⁰⁾: Aus Diethylether/Benzin (Sdp. 40 °C) hellgelbe Kristalle vom Schmp. 47 – 48 °C. – ¹H-NMR ([D₆]DMSO, 80 MHz): $\delta = 2.88$ (s; 6H, NCH₃), 6.66 (s; 2H, CH).

1,2-Bis(cyclohexylcarbonyl)hydrazin (17): 50.0 g (0.34 mol) Cyclohexancarbonsäurechlorid wurden portionsweise zur Lösung von 20 ml (\approx 0.4 mol) Hydrazinhydrat in 100 ml Wasser gegeben. Das abfiltrierte Produkt lieferte aus Dimethylformamid 31.0 g (72%) farblose Kristalle vom Schmp. 276 – 277 °C (Lit.²³⁾ Schmp. 281 °C).

C14H24N2O2 (252.4) Ber. C 66.63 H 9.59 N 11.10 Gef. C 66.51 H 9.47 N 11.04

1,2-Bis(\alpha-chlorcyclohexylmethylen)hydrazin (18): 20.2 g (0.08 mol) 17 und 67 g (0.32 mol) Phosphorpentachlorid in 200 ml Tetrachlorkohlenstoff wurden 10 h unter Rückfluß erhitzt. Nach Abdampfen der Mischung i. Vak. behandelten wir den Rückstand zweimal mit ca. 100 ml Benzol und dekantierten vom ausgefallenen Phosphorpentachlorid. Nach Einengen der vereinigten Benzolauszüge wurde der Rückstand mit Benzol über Kieselgel chromatographiert. Den Abdampfrückstand des Benzoleluats trennten wir durch fraktionierende Destillation im Kugelrohr auf. Die Fraktion 160 – 180 °C/12 Torr, 2.8 g ($\approx 12\%$) farbloses Öl, war nahezu reines 18, das sich als sehr hydrolyseempfindlich erwies.

C14H22Cl2N2 (289.3) Ber. C 58.13 H 7.67 N 9.69 Gef. C 58.60 H 7.80 N 9.32

3,6-Dicyclohexyl-1,4-dihydro-1,2,4,5-tetrazin (5): 1.45 g (5 mmol) 18, 0.50 g Hydrazinhydrat und 1.0 g Triethylamin in 50 ml Benzol wurden 14 h unter Rückfluß erhitzt. Nach Abkühlen wurde filtriert und der Rückstand mit Methylenchlorid gewaschen. Nach Abdampfen der vereinigten Filtrate trennten wir den Rückstand chromatographisch über Kieselgel auf. Laufmittel Benzol: tiefrote Zone, Abdampfrückstand aus Hexan 78 mg (6%) violette Prismen, 3,6-Dicyclohexyl-1,2,4,5-tetrazin vom Schmp. 69–70 °C.

C₁₄H₂₂N₄ (246.4) Ber. C 68.25 H 9.00 N 22.74 Gef. C 68.11 H 9.00 N 22.69

Laufmittel Methylenchlorid/Essigsäure-ethylester (9:1): aus Benzol/Benzin (Sdp. 40 °C) 290 mg (23%) **5** in blaßgelben Kristallen vom Schmp. 202–203 °C (Zers.). – ¹H-NMR ([D₆]DMSO, 80 MHz): $\delta = 0.9-2.2$ (m; 22 Cyclohexyl-H), 7.73 (s; 2 H, NH).

C14H24N4 (248.4) Ber. C 67.70 H 9.74 N 22.56 Gef. C 67.67 H 9.71 N 22.31

3,6-Dicyclohexyl-1-methyl-1,4-dihydro-1,2,4,5-tetrazin (6): 1.45 g (5 mmol) 18, 460 mg (10 mmol) Methylhydrazin und 1.0 g Triethylamin in 50 ml Benzol wurden wie bei 5 umgesetzt. Laufmittel Methylenchlorid: aus Benzol/Benzin (Sdp. 40°C) 580 mg (44%) blaßgelbe Kristalle vom Schmp. 140–141°C. – ¹H-NMR ([D₆]DMSO, 80 MHz): $\delta = 0.9-2.5$ (m; 22 Cyclohexyl-H), 2.87 (s; 3H, NCH₃), 7.88 (s; 1H, NH).

C15H26N4 (262.4) Ber. C 68.66 H 9.99 N 21.35 Gef. C 68.67 H 10.13 N 21.49

3,6-Dicyclohexyl-1,2-dimethyl-1,2-dihydro-1,2,4,5-tetrazin (15): 1.45 g (5 mmol) 18, 600 mg (10 mmol) 1,2-Dimethylhydrazin und 1.0 g Triethylamin wurden wie bei 5 umgesetzt. Laufmittel Methylenchlorid/Essigsäure-ethylester (9:1): aus Pentan 540 mg (40%) gelbliche Nadeln vom

Schmp. 93 – 94 °C. – ¹H-NMR ({D₆}DMSO, 80 MHz): $\delta = 1.0 - 2.4$ (m; 22 Cyclohexyl-H), 2.58 (s; 6H, NCH₃). – MS: m/e = 276 (55%, M^{\oplus}).

C16H28N4 (276.4) Ber. C 69.52 H 10.21 N 20.27 Gef. C 69.57 H 10.16 N 20.19

3,6-Dicyclohexyl-1,4-dimethyl-1,4-dihydro-1,2,4,5-tetrazin (7): 393 mg (1.5 mmol) 6, 1.0 g Bariumoxid, 100 mg Bariumhydroxid \cdot 8 H₂O und 2 ml Methyliodid in 20 ml Dimethylformamid wurden 5 h gerührt. Nach Auftrennen zwischen Benzol und Wasser wurde die organische Phase mehrmals mit Wasser gewaschen und i. Vak. abgedampft. Der Rückstand lieferte nach Chromatographie mit Methylenchlorid über Kieselgel aus Methanol 143 mg (34%) blaßgelbe Kristalle vom Schmp. 91 – 92 °C. – ¹H-NMR ([D₆]DMSO, 80 MHz): $\delta = 0.9 - 2.5$ (m; 22 Cyclohexyl-H), 2.85 (s; 6H, NCH₃). – MS: m/e = 276 (100%, M[⊕]).

C16H28N4 (276.4) Gef. C 69.61 H 10.15 N 20.56

3,6-Bis(methylthio)-1,4-dihydro-1,2,4,5-tetrazin (9)¹¹⁾: Aus Ethanol hellgelbe Kristalle vom Schmp. 192 – 193 °C. – ¹H-NMR ($[D_6]DMSO$, 80 MHz): $\delta = 2.30$ (s; 6H, SCH₃), 8.73 (s; 2H, NH).

1,4-Dimethyl-3,6-bis(methylthio)-1,4-dihydro-1,2,4,5-tetrazin (11): 2.00 g (11.4 mmol) 9¹¹, 6.0 g Bariumoxid, 0.5 g Bariumhydroxid · 8 H₂O und 5 ml Methyliodid in 40 ml Dimethylformamid wurden 3 h unter Stickstoff gerührt. Nach Auftrennen zwischen Wasser und Diethylether/ Benzin (Sdp. 40 – 80 °C; 3: 1) wurde die organische Phase mit Wasser gewaschen, über Magnesiumsulfat getrocknet und i. Vak. abgedampft. Der Rückstand lieferte aus Methanol 1.60 g (69%) hellgelbe Prismen vom Schmp. 84–85 °C. – ¹H-NMR ([D₆]DMSO, 80 MHz): δ = 2.34 (s; 6H, SCH₃), 2.97 (s; 6H, NCH₃).

 $C_6H_{12}N_4S_2$ (204.3) Ber. C 35.27 H 5.92 N 27.42 Gef. C 35.22 H 6.05 N 27.15

Abdampfen der Mutterlauge und Chromatographie des Rückstandes mit Methylenchlorid über Kieselgel lieferte wenig (45 mg) 3,6-Bis(methylthio)-1,2,4,5-tetrazin vom Schmp. $83-84^{\circ}$ C, Misch.-Schmp. $82-83^{\circ}$ C¹¹⁾, 300 mg (13%, insgesamt 82%) 11 vom Schmp. $84-85^{\circ}$ C und 80 mg 1-Methyl-3,6-bis(methylthio)-1,4-dihydro-1,2,4,5-tetrazin (10), aus Cyclohexan hellgelbe Prismen vom Schmp. $99-100^{\circ}$ C. - ¹H-NMR ([D₆]DMSO, 80 MHz): $\delta = 2.32$ (s; 6H, SCH₃), 2.93 (s; 3H, NCH₃), 9.09 (s; 1H, NH). - MS: m/e = 190 (100%, M[⊕]).

 $\begin{array}{c} C_{5}H_{10}N_{4}S_{2} \mbox{ (190.3)} & \mbox{Ber. C 31.56 } H \mbox{ 5.30 } N \mbox{ 29.44 } S \mbox{ 33.70} \\ & \mbox{Gef. C 31.72 } H \mbox{ 5.04 } N \mbox{ 29.66 } S \mbox{ 33.61} \end{array}$

1,4-Dimethyl-3,6-diphenyl-1,4-dihydro-1,2,4,5-tetrazin (14) und 1,2-Dimethyl-3,6-diphenyl-1,2-dihydro-1,2,4,5-tetrazin (16): 3.00 g (12.7 mmol) 3,6-Diphenyl-1,4-dihydro-1,2,4,5-tetrazin $^{(13)}$ (12), 5.0 g Bariumoxid, 0.2 g Bariumhydroxid \cdot 8 H₂O und 5 ml Methyliodid in 50 ml Dimethylformamid wurden unter Stickstoff 3 h gerührt und anschließend wie bei 11 aufgearbeitet. Die chromatographische Auftrennung des Abdampfrückstandes über Kieselgel mit Methylenchlorid, gefolgt von Essigsäure-ethylester, lieferte:

14, aus Methanol/Wasser 200 mg (7%) gelbe Nadeln vom Schmp. 95-96 °C (Lit.^{5,14-16)} Schmp. 94-96 °C). – ¹H-NMR ([D₆]DMSO, 80 MHz): $\delta = 2.88$ (s; 6H, NCH₃), 7.46 (s; 10 aromat. H).

C₁₆H₁₆N₄ (264.3) Ber. C 72.70 H 6.10 N 21.20 Gef. C 72.57 H 6.40 N 20.88

16, aus Methanol/Wasser 150 mg (5%) gelbe Nadeln vom Schmp. $129 - 130 \circ C$ (Lit.⁵⁾ Schmp. $130 - 132 \circ C$). $- {}^{1}$ H-NMR ([D₆]DMSO, 80 MHz): 2.76 (s; 6H, NCH₃), 7.43 - 7.68 (m; 6 aromat. H, H_m, H_p), 7.75 - 8.05 (m; 4 aromat. H, H_o).

C₁₆H₁₆N₄ (264.3) Gef. C 72.81 H 6.33 N 21.07

l-Methyl-3,6-diphenyl-1,4-dihydro-1,2,4,5-tetrazin (13): Zur Lösung von 7.0 g (30 mmol) 3,6-Diphenyl-1,2,4,5-tetrazin in 200 ml Methylenchlorid (wasserfrei) wurden unter Rühren 5.8 g (35 mmol) Methylmagnesiumiodid in 12 ml Diethylether getropft; dabei änderte sich die Farbe der Reaktionsmischung von Rotviolett nach Braunorange. Nach zweimaligem Waschen mit Wasser wurde die organische Phase über Magnesiumsulfat getrocknet und i. Vak. abgedampft. Der Rückstand lieferte aus Benzol/Benzin (30 – 40 °C) 4.0 g (53%) orangegelbe Kristalle vom Schmp. 158 – 159 °C (Zers., Lit.¹⁴⁾ Schmp. 159 °C). – ¹H-NMR ([D₆]DMSO, 80 MHz): $\delta = 2.91$ (s; 3 H, NCH₃), 7.33 – 7.58 (m; 3 aromat. H, H_m, H_p, 3-Phenyl), 7.46 (s; 5 aromat. H, 6-Phenyl), 7.70 – 8.00 (m; 2 aromat. H, H_o, 3-Phenyl), 9.19 (s; 1 H, NH). – MS: m/e = 250 (100%, M^{\oplus}).

C15H14N4 (250.3) Ber. C 71.98 H 5.64 N 22.38 Gef. C 71.80 H 5.77 N 22.54

- P. F. Wiley, 1,2,4,5-Tetrazines, in The Chemistry of Heterocyclic Compounds, Bd. 10, S. 182-207, herausgegeben von A. Weissberger, Interscience, New York, London 1956.
- ²⁾ V. P. Wystrach, Tetrazines, in Heterocyclic Compounds, Bd. 8, S. 110-161, herausgegeben von R. C. Elderfield, J. Wiley, New York, London, Sidney 1967.
- ³⁾ P. F. Wiley, 1,2,4,5-Tetrazines, in The Chemistry of Heterocyclic Compounds, Bd. 33, S. 1112-1172, herausgegeben von A. Weissberger und E. C. Taylor, J. Wiley, New York, Chichester, Brisbane, Toronto 1978.
- ⁴⁾ Z. B.: J. L. Johnson, B. Whitney und L. M. Werbel, J. Heterocycl. Chem. **17**, 501 (1980); L. M. Werbel, D. J. McNamara, N. L. Colbry, J. L. Johnson, M. J. Degnan und B. Whitney, ebenda **16**, 881 (1979); V. I. Cohen, ebenda **15**, 1113 (1978); M. G. Barlow, R. N. Haszeldine und J. A. Pickett, J. Chem. Soc., Perkin Trans. 1 **1978**, 378.
- 5) Yung-Bog Chae, Dissertation: Die Thermolyse des 3,6-Diphenyl-1,4-dihydro-1,2,4,5-tetrazins und ihr Mechanismus, Univ. München 1965.
- ⁶⁾ W. Skorianetz und E. sc. Kováts, Helv. Chim. Acta 55, 1404 (1972).
- ⁷⁾ M. R. Caira, R. G. F. Giles, L. R. Nassimbeni, G. M. Sheldrick und R. Grønbaek Hazell, Acta Crystallogr., Sect. B 32, 1467 (1976).
- ⁸⁾ Z. B.: F. A. Neugebauer und H. Fischer, Liebigs Ann. Chem. 1982, 387, und unveröffentlichte Ergebnisse.
- 9) Th. Curtius, A. Darapsky und E. Müller, Ber. Dtsch. Chem. Ges. 40, 815 (1907).
- ¹⁰⁾ W. M. Tolles, W. R. McBride und W. E. Thun, J. Am. Chem. Soc. 91, 2443 (1969).
- ¹¹⁾ J. Sandström, Acta Chem. Scand. 15, 1575 (1961).
- ¹²⁾ E. Müller und L. Herrdegen, J. Prakt. Chem. [2] 102, 113 (1921).
- 13) R. Huisgen, J. Sauer und M. Seidel, Liebigs Ann. Chem. 654, 146 (1962).
- ¹⁴⁾ O. P. Shvaika und V. I. Fomenko, Dokl. Akad. Nauk SSSR, Ser. Khim. 200, 134 (1971) [Chem. Abstr. 76, 59542a (1972)].
- ¹⁵⁾ O. P. Shvaika und V. I. Fomenko, Zh. Org. Khim. 10, 377 (1974) [Chem. Abstr. 80, 146119u (1974)].
- ¹⁶⁾ B. Holmberg, Ark. Kemi 9, 47 (1955) [Chem. Abstr. 50, 11325c (1956)].
- 17) W. Skorianetz und E. sc. Kováts, Helv. Chim. Acta 54, 1922 (1971); 53, 251 (1970).
- ¹⁸⁾ A. Counotte-Potman, H. C. van der Plas und B. van Veldhuizen, J. Org. Chem. 46, 2138 (1981).
- 19) J. Elguero, R. Jaquier und C. Marzin, Bull. Soc. Chim. Fr. 1968, 713.
- ²⁰⁾ F. Gerson und W. Skorianetz, Helv. Chim. Acta **52**, 169 (1969).
- ²¹⁾ S. F. Nelsen, Cation Radicals from Nitrogen-containing Compounds, in Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie, Gruppe II., Bd. 9d2, S. 22-123, Springer Verlag, Berlin, Heidelberg, New York 1980.
- 22) G. Germain, P. Main und M. M. Woolfson, Acta Crystallogr., Sect. A 27, 368 (1971).
- ²³⁾ S. Olsen und E.-M. Enkemeyer, Chem. Ber. 81, 359 (1948).

[329/82]